“如果有关于斜率的方程,不就发现运动物的速度方程了吗?”
牛顿想:“如果不规则曲线方程,没办法直接写出斜率方程。那规则的方程是不是可以写出斜率方程呢?”
牛顿画出了一个二次方程,知道无题做二次方程运动,速度肯定会变。然后在方程上取出两点自变量,再找到方程上对应的因变量,然后让自变量两个点互相接近,接近到无穷之时,看到两个因变量也相互接近,成为一点,牛顿画出了切线。
牛顿写出这两个即将合并的点的导数方程,就是两个因变量的差比两个自变量的差,也就是这合并为一个点的斜率,就是这个点所在的导数,也是这个点此刻的真正速度。
反过来想,如果知道初速度,然后知道变化量,自然而然就知道这个东西的运动轨迹了。
牛顿继续想,在分割曲线的过程中,无数个被分割的都近似等于梯形。再往细处分割,无限等于长方形。如果吧这无穷个长方形加起来,就可以算出这个曲线所包含的面积了。
或许大自然赐予人思考能力,其中有百分之90是用来思考神学的。
牛顿的晚年居然话大量时间在考虑神学,神学方面的作品远远多于自己的科学著作。
【本章阅读完毕,更多请搜索读书族小说网;https://kpc.lantingge.com 阅读更多精彩小说】